The Adjoint of a Composition Operator
نویسنده
چکیده
The adjoint of a composition operator on H2 induced by a rational function is computed explicitly as a multiple valued weighted composition operator. This computation is based on an expression for the adjoint of a composition operator on the Hardy space, and many other functional Hilbert spaces, as an integral operator. The formula for the adjoint of a composition operator on H2 with rational symbol implies that the kernels of such operators consist of the functions in H2 that satisfy an identity with algebraic coefficients associated with the symbol. These results generalize earlier work of Wahl and of Cowen.
منابع مشابه
Bilateral composition operators on vector-valued Hardy spaces
Let $T$ be a bounded operator on the Banach space $X$ and $ph$ be an analytic self-map of the unit disk $Bbb{D}$. We investigate some operator theoretic properties of bilateral composition operator $C_{ph, T}: f ri T circ f circ ph$ on the vector-valued Hardy space $H^p(X)$ for $1 leq p leq +infty$. Compactness and weak compactness of $C_{ph, T}$ on $H^p(X)$ are characterized an...
متن کاملWeighted composition operators on measurable differential form spaces
In this paper, we consider weighted composition operators betweenmeasurable differential forms and then some classic properties of these operators are characterized.
متن کاملOn Generalization of Sturm-Liouville Theory for Fractional Bessel Operator
In this paper, we give the spectral theory for eigenvalues and eigenfunctions of a boundary value problem consisting of the linear fractional Bessel operator. Moreover, we show that this operator is self-adjoint, the eigenvalues of the problem are real, and the corresponding eigenfunctions are orthogonal. In this paper, we give the spectral theory for eigenvalues and eigenfunctions...
متن کاملSupercyclic tuples of the adjoint weighted composition operators on Hilbert spaces
We give some sufficient conditions under which the tuple of the adjoint of weighted composition operators $(C_{omega_1,varphi_1}^* , C_{omega_2,varphi_2}^*)$ on the Hilbert space $mathcal{H}$ of analytic functions is supercyclic.
متن کاملAlgebraic adjoint of the polynomials-polynomial matrix multiplication
This paper deals with a result concerning the algebraic dual of the linear mapping defined by the multiplication of polynomial vectors by a given polynomial matrix over a commutative field
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005